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Fragile X syndrome (FXS) results in intellectual disability (ID) most
often caused by silencing of the fragile X mental retardation 1
(FMR1) gene. The resulting absence of fragile X mental retardation
protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet
whether the pre- and postsynaptic functions of FMRP are indepen-
dent and have distinct roles in FXS neuropathology remain poorly
understood. Here, we demonstrate an independent presynaptic
function for FMRP through the study of an ID patient with an
FMR1 missense mutation. This mutation, c.413G > A (R138Q),
preserves FMRP’s canonical functions in RNA binding and trans-
lational regulation, which are traditionally associated with postsyn-
aptic compartments. However, neuronally driven expression of the
mutant FMRP is unable to rescue structural defects at the neuro-
muscular junction in fragile x mental retardation 1 (dfmr1)-deficient
Drosophila, suggesting a presynaptic-specific impairment. Further-
more, mutant FMRP loses the ability to rescue presynaptic action
potential (AP) broadening in Fmr1 KO mice. The R138Q mutation
also disrupts FMRP’s interactionwith the large-conductance calcium-
activated potassium (BK) channels that modulate AP width. These
results reveal a presynaptic- and translation-independent function
of FMRP that is linked to a specific subset of FXS phenotypes.

fragile X syndrome | missense mutation | FMR1 sequencing | FMRP |
BK channels

Fragile X syndrome (FXS) is the most common single-gene
disorder responsible for intellectual disability (ID) in patients

(1). Along with cognitive dysfunction, the syndrome typically
presents with several other comorbidities, including behavioral
and social impairments (anxiety and autism spectrum disorder),
neurological defects (seizures and abnormal sleep patterns), and
morphological abnormalities (dysmorphic facies and macro-
orchidism). Most patients inherit the syndrome through a ma-
ternal repeat expansion mutation that transcriptionally silences
the FMR1 gene and results in loss of the gene product, FMRP.
FMRP has complex multifaceted functions at synapses both in

pre- and postsynaptic compartments. As an RNA binding protein,
FMRP is best known for its function as a translation regulator in
dendrites (2). Loss of FMRP has been linked to various forms of
long-term synaptic plasticity defects that depend on local protein
synthesis in the postsynaptic neuron (3). In addition to disrupted
metabotropic glutamate receptor signaling, which has been shown
across multiple brain regions (4–7), FMRP is necessary for activity-
dependent protein synthesis downstream of other signaling re-
ceptor pathways, including ACh, dopamine, and TrkB (8–10).
Although postsynaptic control of translation is believed to be

the dominant function of FMRP, it is unable to explain all of the
pathophysiology observed in FXS animal models. For instance,
in Drosophila, presynaptic expression of the FMR1 homolog,
dfmr1, completely rescues the synaptic overgrowth phenotype at
the neuromuscular junction (NMJ) in dfmr1-null mutants (11–

13). In rodent brain, FMRP has been found in structures called
fragile-X granules, which are present only in axons and pre-
synaptic terminals, and are highly expressed during periods of
peak synaptic plasticity (14, 15). In mosaic Fmr1 mice, the pre-
synaptic presence of FMRP is sufficient to rescue synaptic con-
nectivity defects in the hippocampal circuit (16), and in Aplysia,
down-regulation of FMRP in presynaptic neurons is sufficient to
enhance long-term synaptic depression (17). Furthermore, FMRP
regulation of neurotransmitter release at excitatory hippocampal
and cortical synapses has been shown to be a cell-autonomous
presynaptic and translation-independent process (18, 19).
Both the pre- and postsynaptic functions of FMRP have also

been linked to neuronal and circuit hyperexcitability in FXS
animal models. Consistent with its role as a protein synthesis
regulator, FMRP regulates the expression of a number of den-
dritic voltage-gated K+ channels in various brain circuits (20–22).
In addition to translational regulation, FMRP has been shown to
influence neural excitability by directly modulating the activity of
a number of presynaptic voltage-gated ion channels. For example,
FMRP interacts with the sodium-activated potassium channel,
Slack, to control channel gating (23, 24) and directly interacts with
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the N-type voltage-gated calcium channel, Cav2.2, to control its
surface expression (25). FMRP also modulates activity of the
large-conductance calcium-activated potassium (BK) channel in
hippocampal and cortical excitatory neurons, which is critical for
controlling action potential (AP) duration and neurotransmitter
release (18). FMRP interacts with the regulatory β4-subunit of the
BK channel to increase channel Ca2+ sensitivity and limit AP
duration and neurotransmitter release. In brain slices from Fmr1
KOmice, the absence of FMRP leads to excessive AP broadening,
which can be acutely rescued with intracellular perfusion of an
aminoterminal FMRP fragment containing amino acids 1–298
into the presynaptic neuron. These effects are independent of
translation, suggesting a distinct presynaptic function of FMRP
unrelated to translational control. However, to what extent the
functions of FMRP in pre- and postsynaptic compartments in-
dependently contribute to FXS neuropathology remains unknown.
Moreover, the multitude and complexity of FMRP functions have
made it difficult thus far to establish the link between various
FMRP functions and specific phenotypes in patients.
Distinguishing the role of specific FMRP functions in FXS

phenotypes could, in principle, be possible if partial loss-of-
function mutations were found within the population that con-
tributed to a limited subset of FXS phenotypes. However, to
date, only two missense mutations have been reported to cause
FXS, and both mutations result in functional null forms of
FMRP that phenocopy transcriptionally silenced repeat expan-
sion mutations (26–28).
Here, we have studied the synaptic deficits associated with the

FMR1 missense mutation, c.413G > A (R138Q), which was re-
cently identified in a screen of developmentally delayed males
who were negative for repeat expansion (29). The identified
patient has a history of ID and intractable seizures, but no other
features commonly associated with FXS. We show that R138Q
is a partial loss-of-function mutation that specifically impairs
a presynaptic FMRP function while preserving the transla-
tion regulation capabilities of FMRP. Postsynaptically, R138Q-
FMRP was able to regulate normal AMPA receptor trafficking,
as well as retaining normal polyribosome association and mRNA
binding functions. However, presynaptically, neuronally driven
expression of the mutant FMRP was unable to rescue synaptic
overgrowth at the NMJ in dfmr1-deficient Drosophila. In Fmr1
KO mice, presynaptic R138Q-FMRP was also unable to rescue
AP broadening defects in hippocampal and cortical pyramidal
neurons. Furthermore, biochemical studies revealed that the
R138Q mutation disrupts FMRP’s interaction with BK channels,
which mediate the effect of FMRP loss on AP duration. To-
gether, these results demonstrate functions for FMRP in the
presynaptic compartment that are distinct from translation reg-
ulation, and suggest that a specific FMR1 mutation linked to
a limited subset of FXS phenotypes is associated with isolated
loss of presynaptic function.

Results
Identification of ID Patient with R138Q Missense Mutation. In a pre-
vious sequencing study of 963 developmentally delayed males,
we identified a patient with an R138Q missense mutation in the
FMR1 gene without the CGG-repeat expansion (29). This pa-
tient has a history of global developmental delay, ID, and in-
tractable seizures but no other behavioral, neurological, or
dysmorphic features commonly associated with FXS (Fig. 1A).
Molecular FXS testing revealed 45 CGG repeats, which is within
the normal range (30); however, full sequencing of the patient’s
FMR1 gene revealed a c.413G > A transition that causes the
highly conserved Arg (R) 138 residue to be replaced by Gln (Q)
(Fig. 1 C and D). Both maternal and paternal sides of the family
have a history of learning problems; however, this mutation was
passed through the mother, who was found to be a carrier of the
R138Q mutation (Fig. 1B). A full patient description and clinical
history are provided in SI Case Report.

R138Q Mutation Retains Postsynaptic Functions of FMRP in Translation
Regulation. To test the functional significance of the R138Q mis-
sense mutation, we previously assayed whether this mutation
impairs FMRP’s established role as a protein synthesis regulator.
In hippocampal neurons, postsynaptic AMPA receptor trafficking
is influenced by FMRP-mediated control of local protein synthesis
such that, in the absence of FMRP, there is exaggerated AMPA
receptor internalization (31, 32). To determine if the R138Q
mutation affects FMRP’s ability to regulate AMPA receptor
trafficking, we measured AMPA receptor internalization in Fmr1
KO mouse hippocampal neurons that were infected with either
R138Q-FMRP or WT-FMRP lentivirus. We found that AMPA
receptor internalization in R138Q-FMRP–infected neurons was
not significantly different from WT neurons or WT-FMRP–
infected Fmr1 KO neurons, although Fmr1 KO neurons alone
were significantly different from all of the other groups as ex-
pected (figure S6 of ref. 33). Because regulation of AMPA re-
ceptor trafficking is a function of FMRP’s ability to control protein
synthesis, this finding suggests that R138Q-FMRP retains its ca-
nonical function of regulating mRNA translation.
In line with its role as a protein synthesis regulator, FMRP is

known to bind polyribosomes and specific mRNA targets (1, 34).
To determine if R138Q-FMRP can bind polyribosomes, we
infected Fmr1 KO mouse embryonic fibroblasts (MEFs) with
R138Q-FMRP or WT-FMRP lentivirus and probed for FMRP
distribution after sucrose gradient fractionation. We found that
R138Q-FMRP is robustly present in polyribosome fractions,
similar to WT-FMRP (Fig. 2A). To determine if R138Q-FMRP
can bind mRNA, we infected Fmr1 KO cortical neurons with
R138Q-FMRP or WT-FMRP lentivirus and performed FMRP-
RNA coimmunoprecipitation (co-IP) to measure the relative
mRNA levels of three validated FMRP targets: Map1b, Dlg4,
and CamKIIα (1). We found that R138Q-FMRP associated with
these targets to a similar level as WT-FMRP, whereas neurons
infected with the functional null G266E-FMRP mutant (26), or
GFP alone, did not pull down these mRNAs and were significantly
different fromWT-FMRP as expected (Fig. 2B; two-way ANOVA
with a significant main effect of lentivirus infection; F = 66.57, P <
0.0001, Dunnett’s post hoc analysis: *P < 0.0001 for pairwise
comparison with WT-FMRP control group for each mRNA tar-
get). Together, these data indicate that the R138Q mutation does
not impair FMRP’s postsynaptic function as a translation regula-
tor, as evidenced by rescue of AMPA receptor trafficking, intact
polyribosome association, and mRNA pull-down.

R140Q Mutation Impairs Presynaptic Function in Drosophila. The
preservation of FMRP’s canonical function as a protein synthesis
regulator in the above biochemical studies led us to consider that
the R138Q mutation might simply be a rare benign variant
without any functional consequences. To test this possibility
further, the function of R138Q-FMRP was assessed in an animal
model. Drosophila provides a uniquely powerful system for
studying FMRP function because there is only a single ortholog
from the fragile X-related gene family, dfmr1 (35); therefore,
subtle phenotypes are more likely to be revealed due to loss of
compensatory action from the fragile X-related protein FXR1 or
FXR2. The Drosophila equivalent of the R138Q mutation is
R140Q according to ClustalW alignment (Fig. 1D).
One particularly robust phenotype is the overelaboration of

synaptic branching and number of boutons at the NMJ in dfmr1-
null flies (11). To determine if R140Q-FMRP is able to rescue
synaptic overgrowth at the Drosophila NMJ, we used Da-Gal4 to
drive ubiquitous expression of upstream activation sequence
(UAS)-dfmr1-R140Q in dfmr1-deficient Drosophila. To our sur-
prise, we found that R140Q-FMRP was unable to rescue over-
growth of NMJ length or branching, unlike WT-FMRP (Fig. S1).
Because these NMJ structural defects are known to be a function
of presynaptic FMRP (13), we also used Elav-Gal4 to drive
panneuronal expression of UAS-dfmr1-R140Q in dfmr1-deficient
Drosophila. We found that presynaptic specific expression of
R140Q-FMRP was also unable to rescue overgrowth of NMJ
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length or branching, unlike WT-FMRP (Fig. 3; one-way ANOVA
for NMJ length and branching; F = 272.5 and F = 68.32, re-
spectively; P < 0.0001, Tukey’s post hoc analysis: ****P < 0.0001
for comparison with dfmr1−/−). Quantitative PCR assays for dfmr1
on whole larvae show two- to threefold higher expression of
R140Q-dfmr1 compared with WT-dfmr1 (Fig. S2), indicating that
the lack of rescue in NMJ overgrowth was not due to inadequate
R140Q-FMRP expression.

R138Q Mutation Impairs Presynaptic Function in Mouse Central
Neurons. To validate the presynaptic specific loss of function
we observed with R138Q-FMRP in Drosophila, we sought to
corroborate these findings within a mammalian system. We pre-
viously discovered that FMRP modulates AP duration via BK
channels in hippocampal and cortical excitatory neurons in a cell-
autonomous presynaptic manner (18). We showed that excessive
AP broadening in Fmr1 KO neurons can be acutely rescued with
presynaptic intracellular perfusion of a commercially available
aminoterminal FMRP fragment consisting of amino acids 1–298
and, importantly, that these effects were independent of trans-
lation. To determine if R138Q-FMRP can rescue AP broadening in
Fmr1KO neurons, we created and purified the same aminoterminal
FMRP fragment consisting of amino acids 1–298 with and without
the R138Q mutation (R138Q-FMRP298 and WT-FMRP298, re-
spectively). We then performed AP rescue experiments in current-

clamped CA3 hippocampal pyramidal cells in acute slices from 15-
to 17-d-old Fmr1 KO mice. AP trains were evoked by repetitive
injection of a 1-ms current to evoke a 25-AP train at 62.5 Hz [with
16-ms interstimulus intervals (ISIs)]. An FMRP fragment was in-
troduced into the cells via a patch pipette using a microperfusion
system that permitted us to control the exact time point at which
perfusion was initiated. Only recordings in which AP duration could
be recorded before and after FMRP fragment perfusion were used
in this analysis. As in our previous studies, perfusion of WT-
FMRP298 into CA3 neurons of Fmr1 KO mice rapidly rescued ex-
cessive AP broadening both at baseline and during the train (Fig. 4
A and C; n = 6; paired Student’s t test: P = 0.012 for baseline APs,
P = 0.008 for the averaged last two APs in the train). In contrast,
intracellular perfusion of an R138Q-FMRP298 fragment was unable
to reduce AP broadening in these neurons [Fig. 4 B and C; n = 6;
paired Student’s t test: P = 0.40 (baseline AP), P = 0.44 (end of
train)]. We note that the rescue effect of the WT-FMRP fragment
was measurable within ∼5 min after perfusion initiation. Together
with the fact that the FMRP298 fragment lacks the K-homology 2
(KH2) domain critical for association with polyribosomes, this
rapid rescue provides further support for our earlier findings that
the mechanism of these presynaptic FMRP actions is translation-
independent. These results indicate that the R138Q mutation dis-
rupts FMRP’s ability to regulate AP duration in a presynaptic neuron.

A B

C

A A G A C  T  T A C G G C A  A  A T G T G

A A G A C  T  T A C A G C A A  A T G T G

Asp       Leu      Arg       Gln       Met

Asp       Leu      Gln       Gln       Met

R138

Human ACDATYNEIVTIERLRSVNPNKPATKDTFHKIKLDVPEDLRQMCAKEAAH
Rhesus ACDATYNEIVTIERLRSVNPNKPATKDTFHKIKLDVPEDLRQMCAKESAH
Cat ACDATYNEIVTIERLRSVNPNKPATKDTFHKIKLDVPEDLRQMCAKESAH
Rat ACDATYNEIVTIERLRSVNPNKPATKDTFHKIKLEVPEDLRQMCAKESAH
Mouse ACDATYNEIVTIERLRSVNPNKPATKDTFHKIKLEVPEDLRQMCAKESAH
Chicken ACDATYNEIVTIERLRSVNPNKPATKDTFHKIKLEVPEDLRQMCAKESAH
Frog ACDATYNEIVTIERLRSVNPNKPATKNSFHKVKLDVPEDLRQMCAKDSAH
Zebrafish ACDATLNEIVTLERLRPVNPNKAATKNTFLKTRLDVPEDLRQMCAKDSAH
Fly GFETSYTEICELGRLRAKNSNPPITAKTFYQFTLPVPEELREEAQKDGIH

. ::: .**  : ***. *.* . * .:* :  * ***:**: . *:. *

D

c.413G>A

c.413G>A

Fig. 1. Identification of the ID patient with an R138Q missense mutation. (A) Patient does not have any dysmorphic facial features commonly associated with
FXS. (B) Family pedigree of the proband (indicated by arrow). The stripe pattern indicates learning disability, and the solid black line indicates a seizure
disorder. The proband’s mother is a carrier of the R138Q mutation. No other family members were available for genetic testing. (C) DNA chromatogram of
the unaffected and patient alleles showing the single-nucleotide substitution (NM_002024.5:c.413G > A) that replaces Arg at residue 138 with Gln (R138Q).
(D) ClustalW alignment across multiple species of FMRP amino acids 98–147. FMRP at residue 138 is highly conserved from human through Drosophila.
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We have previously shown that FMRP regulation of AP du-
ration is a widespread phenomenon observed in both excitatory
hippocampal and cortical neurons. We thus tested whether the
inability of R138Q-FMRP298 to rescue the AP broadening defect
in Fmr1 KO mice is also observed in cortical pyramidal neurons.
AP measurements were performed in 15- to 20-d-old layer 5
cortical pyramidal neurons of the entorhinal cortex of Fmr1 KO
mice using the same intracellular perfusion approach described
above, except a 25-AP train at 60 Hz was used. Similar to hip-
pocampal neurons, intracellular perfusion of WT-FMRP298
rapidly reduced AP broadening in cortical pyramidal neurons,
whereas perfusion of R138Q-FMRP298 did not have a significant
effect [Fig. 4 D–F; paired Student’s t test; WT: n = 8, P = 0.015
(baseline), P = 0.028 (end of train); R138Q: n = 7, P = 0.69
(baseline), P = 0.72 (end of train)]. These results support the
above evidence that the R138Q mutation disrupts the pre-
synaptic function of FMRP to regulate AP duration in both
hippocampal and cortical pyramidal neurons.

R138Q Mutation Disrupts FMRP Interaction with BK Channels.What is
the mechanism by which the R138Q mutation renders FMRP
incapable of regulating AP duration? We have previously shown
that FMRP regulates AP duration and neurotransmitter release
in excitatory pyramidal neurons through FMRP’s interaction
with the BK channels, particularly their regulatory β4-subunit
(18). The above observations therefore suggest that the R138Q
mutation may interfere with FMRP/BK channel interactions. To
test this possibility, we used an in vitro binding assay in which
His-tagged WT-FMRP298 or R138Q-FMRP298 fragments were
used to pull down the BK channel from WT brain lysates. The
WT-FMRP298 fragment interacted with the BK channel β4-
subunit (Fig. 4G) in agreement with our previous observations
(18) and revealed that FMRP/β4 interaction is mediated by the
FMRP amino terminus. In contrast to WT-FMRP298, we observed
markedly reduced β4-subunit association with R138Q-FMRP298 (Fig.
4 G and H; n = 5; paired Student’s t test, P < 0.0001). We also ob-
served binding of the BK channel α-subunit with WT-FMRP298, and

this interaction was slightly but significantly reduced with R138Q-
FMRP298 (Fig. 4 G and H; n = 4; paired Student’s t test, P = 0.02).
These results indicate that the R138Q mutation reduces FMRP in-
teraction with the BK channels, particularly with the BK β4-subunit.

Presynaptic Effects of R138QMutation on AP Duration Are Transcription-
Independent. A recent study has revealed a nuclear function of
FMRP in chromatin binding and transcriptional regulation, which
was abolished by the R138Q mutation (33). We thus tested
whether presynaptic effects of the R138Q mutation could be me-
diated, in part, by transcriptional changes. Slices were preincubated
for at least 1 h and continuously perfused during recordings with
the transcription inhibitor actinomycin D (40 μM). AP duration
was examined before and after intracellular perfusion of WT-
FMRP298 in Fmr1 KO CA3 pyramidal neurons, as described above,
to test whether the ability of FMRP to regulate the AP waveform
requires transcriptional changes. Preincubation with actinomycin D
alone caused a significant increase in the baseline AP width (n = 8;
paired Student’s t test, P < 0.001), indicating the effectiveness of
the drug application. Most importantly, however, actinomycin D
had no effect on the ability of WT-FMRP298 to reduce AP width at
baseline or during AP trains [Fig. 4 I and J; 25-AP train at 60 Hz;
n = 8; paired Student’s t test; P = 0.02 (baseline), P < 0.001 (end of
train)], indicating that FMRP regulation of AP duration in excit-
atory hippocampal neurons is transcription-independent.

Discussion
The pathophysiology of FXS is complex, involving both pre- and
postsynaptic defects. However, the interdependence and specific
contributions of pre- and postsynaptic FMRP functions to vari-
ous FXS phenotypes have been difficult to determine. Through
the study of a previously unidentified FMR1 missense mutation,
R138Q, we have demonstrated that FMRP plays an important
presynaptic role that is independent from its canonical post-
synaptic function in mRNA translation. Our experiments indicate
that the R138Q mutation retains the postsynaptic translation
regulation capabilities of FMRP but is incapable of rescuing
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presynaptic structural defects at the dfmr1-deficient Drosophila
NMJ or of rescuing presynaptic AP broadening defects in Fmr1
KO mouse central neurons. Furthermore, we found that the
R138Q mutation strongly reduces FMRP’s ability to interact with
the BK channels that mediate FMRP’s regulation of AP duration
and glutamate release. The finding that R138Q is a partial loss-of-
function mutation that abolishes only a subset of FMRP functions
is consistent with the patient’s limited FXS phenotype consisting
of ID and seizures, but not any other symptoms commonly as-
sociated with FXS. Taken together, these results suggest that pre-
and postsynaptic functions of FMRP are independent, and link
the isolated loss of presynaptic FMRP function with a specific
subset of FXS clinical features.

Insights into FXS Pathophysiology from FMR1 Missense Mutations.
To date, there have only been two other reported missense
mutations within FMR1: G266E (26) and I304N (27). Both of
these mutations reside within the RNA binding domains of
FMRP and result in loss of RNA binding and polyribosome as-
sociation (26, 28). Studies of these mutations provide strong ev-
idence that FMRP’s inability to regulate protein synthesis is a
critical component of FXS pathophysiology, given that both of
the patients with the G266E and I304N mutations presented with

a very characteristic FXS phenotype, including marked ID, de-
velopmental delay, macroorchidism, and dysmorphic facies. Con-
versely, the R138Q mutation does not reside within an RNA
binding domain but, instead, is located at the aminoterminal do-
main of FMRP. In contrast to the patients with G266E and I304N
mutations, the patient with the R138Q mutation only displays ID
and seizures, which corresponds well with our observation that
R138Q is a partial loss-of-function mutation. These results sug-
gest that presynaptic FMRP function may be specifically con-
nected to ID and seizure pathology in FXS, possibly through the
aminoterminal domain.

BK Channel Dysfunction in ID and Seizures. We have previously
shown that FMRP binds to and modulates the activity of BK
channels to regulate AP duration and neurotransmitter release
(18). These functions are abolished by the R138Q mutation,
thereby potentially linking FMRP and BK channel modulation
to the ID and seizure phenotype exhibited by the patient with the
R138Q mutation. BK channels have, in fact, already been linked
to ID and seizures separately in several previous reports. For
instance, an autistic patient with severe ID was found to have
a balanced translocation resulting in disruption of the KCNMA1
gene that encodes the BK channel (36). Dysregulation of BK
channel isoform expression has also been linked to a mild form
of autosomal recessive nonsyndromal mental retardation (37).
Probably the most compelling evidence comes from another
report showing that the SNPs with the highest risk for autism
spectrum disorder were found in KCNMB4, the gene encoding
the β4-subunit of the BK channel (38).
BK channels have also been implicated in epilepsy and seizure

disorders in numerous cases through both loss-of-function and
gain-of-function mechanisms (39). Because BK channels play
a critical role in repolarizing the membrane potential after AP
firing, loss of BK channel function typically results in increased
seizure susceptibility (40, 41). In line with loss-of-function mech-
anisms, pharmacological inhibition of BK channels triggers seiz-
ures (42), down-regulation of BK channel expression is associated
with the development of temporal lobe epilepsy in rats (43, 44),
and a particular KCNMB4 SNP is strongly correlated with tem-
poral lobe epilepsy in humans (45). Interestingly, some gain-of-
function mutations in BK channels have also been implicated in
seizure etiology, primarily absence epilepsy, by rapidly repolarizing
the membrane and allowing for faster firing rates (46, 47). Nev-
ertheless, BK channel activity is clearly intimately connected with
seizure pathology. In fact, presynaptic BK channels have recently
been shown to localize preferentially to and regulate neurotrans-
mitter release at glutamatergic, but not GABAergic, synapses,
further supporting their critical role in modulating circuit hyper-
excitability (48). Whether FMRP/BK channel interactions are
directly responsible for seizure and/or ID phenotypes and whether
targeting BK channels could be a useful component of FXS ther-
apy remains to be determined.

Aminoterminal Domain and FMRP Function.Our studies suggest that
this translation-independent presynaptic function of FMRP,
abolished by the R138Q mutation, depends on an intact ami-
noterminal domain. Indeed, an aminoterminal fragment of
FMRP (residues 1–298) was sufficient to rescue excessive AP
broadening in Fmr1 KO cortical and hippocampal neurons, as
well as mediating FMRP binding with BK channel subunits. This
298-aa fragment is composed of the FMRP aminoterminal do-
main (amino acids 1–215) in addition to the full KH1 and a small
portion of the KH2 RNA binding domains. Although we cannot
rule out the possibility that FMRP’s presynaptic function may be
mediated by the KH1 domain, it is highly unlikely, given that we
have previously shown the presynaptic effects of FMRP on AP
duration and glutamate release are independent of translation,
and therefore unlikely to involve any RNA binding domain
function (18). Furthermore, we have shown that the R138Q
mutation does not disrupt FMRP’s RNA binding ability yet does
impair presynaptic FMRP function at the Drosophila NMJ and in
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mouse hippocampal and cortical neurons. Thus, we propose that the
aminoterminal domain mediates FMRP’s presynaptic function, yet
the exact locus that is responsible for FMRP’s modulation of AP
duration or interaction with BK channels will require further studies.
The FMRP aminoterminal domain also mediates interaction

of FMRP with a number of its binding partners (49–52) and
contains two tandem Tudor/Agenet motifs (53, 54) that mediate
a nuclear FMRP function in chromatin binding and DNA dam-
age response (33). Interestingly, the R138Q mutation also abol-
ished nucleosome binding, indicating this mutation may play a
role in the pathophysiology of FXS through transcriptional changes
(33). We note, however, that our observations of the very rapid
effects of WT-FMRP298 perfusion on AP duration (within ∼5 min)
and that WT-FMRP298 is fully capable of rescuing AP duration
in the presence of the transcription inhibitor actinomycin D indi-
cate that FMRP regulation of the AP waveform is transcription-
independent. The effects of the R138Q mutation on this pre-
synaptic FMRP function are thus unlikely to be mediated by
transcriptional changes. Regardless, our work suggests a previously
unidentified function for the aminoterminal domain of FMRP in
the pathophysiology of FXS by modulating AP duration in a cell-
autonomous presynaptic manner and presumably contributing to
circuit hyperexcitability via interactions with the BK channels. In
summary, our study of the R138Q missense mutation in FMR1,
associated with a limited subset of FXS clinical features, provides
a first step in teasing out the domain-specific functions of FMRP
in pre- and postsynaptic compartments, and their contribution to
various elements of FXS pathophysiology.

Experimental Procedures
Constructs. For lentivirus production, full-length human aminoterminal Flag-
tagged FMR1 was cloned into the FUGW plasmid with and without the
R138Q mutation and was sent to the Emory University Viral Vector Core for
lentivirus production. For Drosophila transgene injection, the Drosophila
equivalent of the human R138Q mutation, c.419_420delinsAG (R140Q), was
introduced into the pUAST-dfmr1 plasmid. For protein expression, the
Emory Custom Cloning Core Facility cloned truncated WT and R138Q human
FMR1 (residues 1–298), with and without an aminoterminal 6xHis tag, into
a modified pET28b expression vector.

Animals. Control and Fmr1 KO mice on a C57BL/6J background were used for
cell culture experiments. Control and Fmr1 KO mice on an FVB background
were used for electrophysiology experiments. All animal procedures con-
formed to the guidelines approved by the Washington University Animal
Studies Committee and the Emory University Institutional Animal Care and
Use Committee guidelines. This study was approved by the Emory University
Internal Review Board.

Cell Culture. Immortalized MEFs were generated from Fmr1 KO mice and
maintained in culture with DMEM (Corning) supplemented with 10% (vol/vol)
FBS (HyClone). Primary cortical neuronal cultures were generated from em-
bryonic day 16.5 Fmr1 KO mice. Neurons were plated directly onto poly-L-
lysine–coated (0.2 mg/mL) dishes and maintained in culture with Neurobasal
medium (Gibco) supplemented with B27 (Invitrogen).

Polyribosome Profiling and Western Blotting. Fmr1 KO MEFs were transduced
with lentivirus at ∼40–50% confluency for 16 h and collected for poly-
ribosome assay 24 h after virus removal. Immediately before harvest, cells
were treated with cycloheximide for 15 min at 37 °C. Cell lysates were
clarified and loaded on top of 15–45% wt/wt linear sucrose gradients,
centrifuged at 247,600 × g for 2 h at 4 °C using a SW41Ti rotor (Beckman
Coulter), and fractionated into 10 × 1.1-mL fractions with continuous
monitoring at OD254. For Western blotting, 500 μL of each fraction was
concentrated with Amicon Ultra 30K centrifugal filters (Millipore) and pro-
cessed for Western blotting using standard techniques. Enhanced chem-
iluminescence signal was detected using SuperSignal Femto Max Sensitivity
Substrate (Thermo Scientific).

RNA Co-IP and Quantitative RT-PCR. Fmr1 KO primary cortical neurons were
transduced with lentivirus at 10 days in vitro (DIV) for 18 h and collected for
RNA co-IP 72 h after virus removal. Neuronal lysates were separated into
input and IP fractions, and the IP fractions were incubated with EZview Red
Anti-Flag M2 Affinity Gel (Sigma) for 2 h at 4 °C. RNA was extracted from

both input and IP samples, and processed for quantitative RT-PCR. Before
RNA extraction, a portion of the input and IP samples was saved for Western
blotting to verify that lentiviral infection produced equal FMRP expression
and pull-down across samples.

For quantitative RT-PCR, total RNA was reverse-transcribed with the
SuperScript III First Strand Synthesis System for RT-PCR (Invitrogen), PCRwas
performed with iQ SYBR Green Supermix (BioRad), and mRNA was quan-
tified using the standard curve method for relative quantification. See
Table S1 for a list of primers. The ratio between IP and input mRNA
quantification was normalized to the WT value for each experiment to
allow comparison across different experiments.

Drosophila NMJ Immunostaining and Analysis. All flies were maintained under
standard culture conditions. Transgenic dfmr1 WT and R140Q mutant flies
were generated by standard P-element transgene injection (Bestgene, Inc.)
into a w1118 strain and then crossed with either a Da-GAL4 or Elav-GAL4 line
(nos. 8641 and 458, respectively; Bloomington Stock Center). Third-stage
wandering larvae were dissected and immunostained for antidiscs large
primary antibody (4F3; Developmental Studies Hybridoma Bank) using
standard techniques. NMJ length and number of branches were measured
from muscles 6/7 of abdominal segment 2 or 3. Approximately 30 larvae
were analyzed per genotype.

Brain Slice Preparation. Both male and female 15- to 20-d-old mice were used.
Brain slices were prepared as we described previously (18). Briefly, after being
deeply anesthetized with CO2, mice were decapitated and their brains were
dissected out in ice-cold artificial cerebral spinal fluid (ACSF) solution. Hori-
zontal brain slices (350 μm), including the hippocampus, were cut using
a vibrating microtome (Leica). Slices were initially incubated at 35 °C for 1 h
for recovery and then kept at room temperature until use.

AP Recordings and Analysis. APs were recorded using an Axopatch 700B
amplifier (Molecular Devices) in whole-cell configuration from hippocampal
CA3 pyramidal neurons or layer 5 pyramidal neurons in the entorhinal cortex,
as we described previously (18). All recordings were performed at near-
physiological temperatures (33–34 °C). APs were evoked by repetitive in-
jection of a 1-ms current to evoke a 25-AP train at 60 Hz or 62.5 Hz. Sixty-
hertz trains have fractional 16.67-ms ISIs, whereas 62.5-Hz trains have 16-ms
ISIs. Because of software rounding of submillisecond timing to a whole
millisecond, every third ISI is 1 ms shorter in 60-Hz stimulus trains, causing
apparent periodicity in the data (55). This periodicity was no longer present
in 58.8-Hz trains (constant 17-ms ISIs) (55) or 62.5-Hz trains (constant 16-ms
ISIs; Fig. 4 A–C). This effect is very small (<2%) and is present in all recordings
at 60 Hz. Membrane potential was set at −65 mV by automatic slow current
injection to ensure stability of the resting potential and to prevent spon-
taneous AP firing. AP duration during bursts was normalized to an averaged
duration of four low-frequency baseline APs (0.2 Hz) that were evoked be-
fore each burst. FMRP fragments were introduced into the neurons via patch
pipette using a microperfusion system (Bioscience Tools). Only recordings in
which no significant AP amplitude rundown was observed after FMRP per-
fusion were used in this analysis. Recordings were filtered at 2 kHz, digitized
at 20 kHz, acquired using custom software written in LabView (National
Instruments), and analyzed using programs written in MATLAB (MathWorks).

Protein Expression and Purification.WT and R138Q FMRP fragments (residues
1–298), with or without an additional 6xHis tag immediately aminoterminal
to FMRP, were expressed in Escherichia coli as 6xHis-SUMO fusion pro-
teins (56). Protein expression was induced with 0.4 mM isopropyl β-D-1-
thiogalactopyranoside for 16 h. The fusion proteins were then isolated on a
nickel-charged HiTrap chelating column (GE Healthcare) and eluted with
500 mM imidazole, and the 6xHis-SUMO tag was removed by overnight in-
cubation with yeast ubiquitin-like–specific protease 1 (Ulp1; purified in-house)
at 4 °C. The cleaved proteins were further purified by a HiTrap-Q column
(GE Healthcare) and Superdex 75 (16/60) sizing column (GE Healthcare).

Pull-Down Assay. Whole mouse brain from WT C57BL/6J mice was homoge-
nized on ice in lysis buffer, clarified by centrifugation at 20,000 × g, and
precleared with HisPur Cobalt Resin (Pierce) for 1 h at 4 °C. His-tagged WT-
FMRP298 or R138Q-FMRP298 fragments were then incubated with brain lysate
overnight at 4 °C. HisPur Cobalt Resin was added and incubated for 1 h at
4 °C, followed by centrifugation at 350 × g for 1 min. Beads were washed
five times with washing buffer before elution of bound proteins with 1× SDS/
PAGE loading buffer and analysis by standard Western blotting.

Additional details of experimental procedures are available in SI Experimental
Procedures.
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